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This article presents numerical modelling of the heat transfer process in a sample during
cryopreservation by vitrification in a microfluidic system. Single-phase flow of the working
fluid in the microchannels during warming was considered, while two-phase flow during
cooling. The mathematical model is based on the Fourier equation with a source term that
takes into account the degree of ice crystallisation. Fuzzy thermophysical parameters were
assumed in the model. The problem was solved by the finite difference method and the
fourth-order Runge-Kutta algorithm, using the concept of α-cuts. The results of numerical
simulation were compared with the results from the literature.
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1. Introduction

During modelling physical phenomena occurring in biological samples, uncertain parameters are
often used. These variables are imprecise because they are determined experimentally and depend
on the age, sex, and condition of the examined organism. As a consequence, physical processes in
biological samples or in engineering systems are often simulated with deterministic models that
introduce at the same time some assumptions and simplifications (Wang and Matthies, 2021).
On the other hand, uncertain quantities present in physical phenomena can be predicted by

probabilistic or non-probabilistic approaches. Stochastic methods based on probabilistic algo-
rithms are successfully suitable for describing uncertainties with a known database containing
measurements of a given parameter. From these input data, a probability distribution function
can be prepared to describe uncertainty characteristics. Unfortunately, for some engineering
problems, probabilistic techniques are ineffective due to limited access to measurement data
(Wang and Matthies, 2021).
Alternative approaches to the modelling of uncertain quantities are fuzzy set theory and

interval set theory, which are qualified as non-probabilistic methods (Lü et al., 2017). The
concept of fuzzy sets was suggested by Lofti and Zadeh in 1965 (Zadeh, 1965). According to this
theory, a membership function is defined for each element of the set, which takes values in the
range from 0 to 1. The membership function determines whether a given element belongs to the
set completely, partially, or is external to it (Hanss, 2005; Skorupa, 2023). There are different
types of membership functions, where the simplest include linear functions, such as triangular
and trapezoidal ones, and the most complex functions are Gaussian or bell curves (Caniani et
al., 2011). It is worth mentioning that fuzzy numbers are often performed using α-cuts concept
(Giachetti and Young, 1997; Guerra and Stefanini, 2005).
An other effective method is the interval set theory introduced by Ramon and Moore in 1966

(Moore, 1966). In that case, uncertain variables are described by a set for which the upper and
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lower bounds are specified. The membership function is equal to 1 when the element belongs to
the set, or 0 when it is not in the given interval (Lü et al., 2017; Skorupa, 2023).

The subject of this paper focusses on the use of fuzzy set theory to model phenomena that
occur during cryopreservation. This is a process that involves reducing biological activity of a
biological material and then storing it at a low temperature. The essence of cryopreservation is
to prevent samples from damage after restoring them to physiological temperature (Jang et al.,
2017; Zhao and Fu, 2017).

One of the phenomena present during cryopreservation is crystallisation, which involves the
formation of ice crystals from the water contained in the biological sample. The crystallisation
process is initiated by nucleation caused by the metastable homogeneous phase. Then around
the nucleus, growth of ice crystals occurs (Tan et al., 2021).

The formation of ice crystals can damage biological samples. To prevent these problems,
during cryopreservation, chemical compounds called cryoprotectants (CPAs) are used, and the
cooling rate is regulated (Skorupa, 2023). On the basis of this, different cryopreservation methods
can be distinguished. Vitrification, for example, involves overcooling the sample at a high cooling
rate, thus vitrifying the solution without ice crystal formation (Jang et al., 2017).

To predict the potential damage to the cryopreserved sample, the cryopreservation pro-
cess is modelled mathematically and numerically. For this, it is necessary to consider var-
ious transport phenomena, such as heat and mass transfer or osmotic transport (Sko-
rupa, 2023). The governing equation for estimating the thermal distribution is the Fourier
equation (Fourier, 1882). Furthermore, this relationship is coupled to the degree of crys-
tallisation determined, for example, from the non-isothermal kinetic equation proposed by
Boutron and Mehl (1990). For preparing a macroscopic model of the liquid solidification
process, different approaches are applied, for example, the uncoupled method, the Stefan
model (sharp interface method) and the zone model (Skorupa, 2023; Song et al., 2010; Zhou
et al., 2013).

In the literature, it is possible to find examples of mathematical calculations of thermal
processes during freezing coupled to the degree of crystallisation with deterministic models (Shi
et al., 2018; Song et al., 2010; Zhang et al., 2017; Zhou et al., 2013). Song et al. (2010) presented
an example of modelling vitrification process modelling performed by the droplet-based method.
The same technique for cell aggregates was also examined by Shi et al. (2018). Zhang et al. (2017)
studied vitrification, in which the tube with the sample was immersed directly into the working
fluid. That numerical calculation was supplemented by a model of the probability of intracellular
ice formation. Zhou et al. (2013) investigated the vitrification process, which was analysed in a
microfluidic system.

The interesting position is the article (Piasecka-Belkhayat and Skorupa, 2023) published
in 2023, which is devoted to modelling thermal processes, including the degree of crystalli-
sation, using the interval set theory. Further research on applying non-probabilistic methods,
including interval numbers and triangular fuzzy numbers, can be found in the thesis (Skorupa,
2023).

This article presents the modelling of bioheat transfer and degree of crystallisation during
cryopreservation in a microfluidic device with imprecise parameters. The uncertainties are con-
sidered by non-probabilistic methods, more specifically, algorithms for fuzzy numbers defined by
a triangular and a trapezoidal membership function. The results obtained are compared with
data from the literature (Piasecka-Belkhayat and Skorupa, 2023; Skorupa, 2023; Zhou et al.,
2013). The problem is specified mathematically by the Fourier equation and the non-isothermal
kinetic equation, while simulations are conducted with the finite difference method (FDM) and
the Runge-Kutta algorithm.



Cryopreservation analysis considering degree of crystallisation... 209

2. Governing equations

The paper analyses the task of one-dimensional heat transfer, taking into account that the cell
suspension is maintained as a thin layer on the chip. Figure 1 shows the microfluidic system
model based on the concept presented in (Tuckerman and Pease, 1981; Zhou et al., 2013).
The diagram also includes the marked nodes A, B and C where the corresponding boundary
conditions are given.

Fig. 1. Model of the microfluidic system

The energy equation describing the temperature distribution within a one-dimensional mi-
crofluidic chip can be formulated as the fuzzy Fourier equation (Fourier, 1882)

∂
(
c̃(T̃ )ρT̃ (z, t)

)

∂t
=
∂

∂z

(
λ̃(T̃ )
∂T̃ (z, t)

∂z

)
+ S̃h (2.1)

where T̃ is the fuzzy temperature, λ̃ is the fuzzy thermal conductivity, c̃ is the fuzzy specific
heat, S̃h is the fuzzy heat source term, while ρ is the density.
The fuzzy source component S̃h for the sample layer is expressed by the following relation

(Shi et al., 2018)

S̃h = ρhLh
∂χ̃

∂t
(2.2)

where χ̃ is the fuzzy degree of ice crystallisation belonging to the interval (0̃, 1̃), ρh is the density
of water, and Lh is the latent heat of water. In contrast, for the chip wall, this component is
equal to zero.
In the above equation, values for water were implemented instead of the thermophysical

parameters of the biological sample due to the fact that the thermal properties of biological cells
are similar to those of their prevalent component, namely water (Shi et al., 2018).
The crystallisation process is described by the non-isothermal Mehl-Boutron kinetic equation

(Boutron and Mehl, 1990)

∂χ̃

∂t
= χ̃′(χ̃, T ) = kaχ̃

2

3 (1− χ̃)(Tm − T̃ )e
−
Q

RT̃ (2.3)

where ∂χ̃/∂t means the growth rate of χ̃, while ka is the characteristic coefficient depending on
the solution composition, Tm is the freezing (melting) temperature, Q is the activation energy
and R is the gas constant (R = 8.314 Jmol−1K−1).
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The boundary conditions must be attached to the mathematical model defined in this way.
Due to the use of thermal insulation (see Fig. 1), the heat flux between the devices and the
environment is neglected.

Node A, shown in Fig. 1, lies at the boundary between the model and the working fluid,
which is the main source of thermal changes. The fuzzy heat flux q̃ at this node is described by
the boundary condition of the 3rd type extended by the microchannel geometry (Zhou et al.,
2013)

q̃(z, t)(Wf + 2Ww) = αΓ (T̃ (z, t) − Tf )(Wf + 2η̃Hf ) (2.4)

where Wf , Ww and Hf are the microchannel dimensions (see Fig. 1), Tf is the temperature of
the working fluid, αΓ is the external heat transfer coefficient, η̃ is the fuzzy fin efficiency and
subscripts w and f denote the chip wall and the working fluid, respectively.

The fuzzy heat flux is defined as follows (Mochnacki and Suchy, 1993)

q̃(z, t) = −nλ̃
∂T̃ (z, t)

∂z
(2.5)

where n is the normal vector.

The fuzzy fin efficiency is determined from the relationship (Zhou et al., 2013)

η̃ =
tanh(m̃Hf )

m̃Hf
(2.6)

where m̃ is the fuzzy fin parameter (Zhou et al., 2013)

m̃ =

√
2αΓ

λ̃w(T̃ )2Ww
(2.7)

where λ̃w is the fuzzy thermal conductivity of the chip wall.

Let us now turn to node B which is located at the interface between the chip wall and the
sample layer. At this node, a boundary condition of the 4th type is assumed with ideal contact
(Mochnacki and Suchy, 1993)

−nλ̃w
∂T̃w(z, t)

∂z
= −nλ̃s

∂T̃s(z, t)

∂z
T̃w(z, t) = T̃s(z, t) (2.8)

where subscript s denotes the sample layer domain.

On the other hand, an adiabatic condition was assumed at node C due to symmetry of the
system under consideration (Mochnacki and Suchy, 1993; Zhou et al., 2013)

q̃(z, t) = −nλ̃
∂T̃ (z, t)

∂z
= 0̃ (2.9)

To complete the mathematical description, it is necessary to take into account the initial
conditions in which the temperature and the degree of crystallisation in the sample domain were
determined at time t = 0 (Zhou et al., 2013)

T̃ (z, 0) = T0 χ̃(z, 0) = χ0 (2.10)

where T0 and χ0 are the initial values of temperature and degree of crystallisation, respectively.
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3. Numerical model

The fuzzy finite difference method, which is a very good tool for solving nonlinear equations, was
used to solve an unsteady heat transfer problem defined in this way, Eq. (2.1). The non-linearity
present in Eq. (2.1) is related to both the varying values of thermophysical parameters c̃(T̃ ),
λ̃(T̃ ) and the fuzzy source term S̃h(T̃ ). The numerical model of thermal processes occurring in
the microfluidic system is based on the finite difference method as presented in (Mochnacki and
Suchy, 1993) supplemented by the rules of fuzzy arithmetics, in particular, the concept of α-cuts
dedicated for triangular and trapezoidal fuzzy numbers (Piasecka-Belkhayat and Korczak, 2020;
Skorupa, 2023).

According to the fuzzy number theory, any fuzzy number can be written as the sum of all
its α-cuts (Piasecka-Belkhayat and Korczak, 2020; Skorupa, 2023)

ã =
∑

α∈[0,1]

ãα (3.1)

where α-cuts are expressed as a set of closed intervals

∀α ∈ [0, 1] : ãα = [a
−

α , a
+
α ] (3.2)

Considering the case of a triangular fuzzy number α̃ = (a−, a0, a
+), we can define the α-cut

as a set of closed intervals of the following form (Skorupa, 2023)

ãα = [(a0 − a
−)α+ a−, (a0 − a

+)α+ a+] (3.3)

where a0 is the core of the number, while the values of a
− and a+ denote the left and right ends of

the fuzzy number respectively; while in the case of the trapezoidal fuzzy number ã = (x0, y0, σ, β),
the α-cut is represented as follows (Piasecka-Belkhayat and Korczak, 2020)

ãα = [x0 − (1− α)σ, y0 + (1− α)β] (3.4)

where x0 and y0 are the defuzzifiers from the left and right side, respectively; σ and β are
the left and right fuzzinesses. In this way, complicated arithmetic operations on fuzzy numbers
are avoided by performing calculations on closed intervals, which are interval numbers, using
the rules of interval arithmetics (Skorupa, 2023). The calculations carried out involved different
values of the parameter α.

Using the finite difference method, a time grid with a constant step ∆t and a geometric grid
with a constant step h are introduced at the beginning. Figure 2 shows the three-point star idea,
which is used to create the geometric mesh.

Fig. 2. Three-points star

The model assumes weak non-linearity of the specific heat. Therefore, the differential equa-
tion for internal nodes corresponding to the fuzzy Fourier equation written in the implicit scheme
has the following form (Mochnacki and Suchy, 1993)

c̃f−1i ρi
T̃ fi − T̃

f−1
i

∆t
=
2

h2
λ̃f−1i−1 λ̃

f−1
i

λ̃f−1i−1 + λ̃
f−1
i

(T̃ fi−1− T̃
f
i )+

2

h2
λ̃f−1i+1 λ̃

f−1
i

λ̃f−1i+1 + λ̃
f−1
i

(T̃ fi+1− T̃
f
i )+ (S̃h)

f
i (3.5)



212 A. Piasecka-Belkhayat, A. Skorupa

or it can be written as

AiT̃
f
i−1 +BiT̃

f
i + CiT̃

f
i+1 = T̃

f−1
i +

∆t

c̃f−1i (ρi)i
(S̃h)

f
i (3.6)

where coefficients Ai, Bi and Ci are calculated from the relationships

Ai = −
2∆t

h2c̃f−1i ρi

λ̃f−1i−1 λ̃
f−1
i

λ̃f−1i−1 + λ̃
f−1
i

Bi =
2∆t

h2c̃f−1i ρi

( λ̃f−1i−1 λ̃
f−1
i

λ̃f−1i−1 + λ̃
f−1
i

+
λ̃f−1i+1 λ̃

f−1
i

λ̃f−1i+1 + λ̃
f−1
i

)
+ 1

Ci = −
2∆t

h2c̃f−1i ρi

λ̃f−1i+1 λ̃
f−1
i

λ̃f−1i+1 + λ̃
f−1
i

(3.7)

while superscript f means a moment of time, the time step is ∆t = tf − tf−1, i = 2, . . . , nel − 1,
where nel is the number of nodes, and

c̃f−1i = c̃(T̃ f−1i ) λ̃f−1k = λ̃(T̃ f−1k ) (3.8)

where k denotes the node number (k = i− 1, i, i + 1).
The obtained system of fuzzy equations supplemented with boundary-initial conditions can

be solved using the Thomas method (Skorupa, 2023). It is important to note that the advantage
of the implicit scheme is its stability and the lack of restrictions on allowable values of the time
step (Mochnacki and Suchy, 1993).

Let us now turn to linearisation of the fuzzy source component S̃h(χ̃
f
i ), Eq. (2.2). The values

of the fuzzy degree of ice crystallisation χ̃ and ice growth rate χ̃′ were calculated numerically
using the fourth-order Runge-Kutta algorithm due to difficulty in calculating these relationships
analytically (Piasecka-Belkhayat and Skorupa, 2023; Zhou et al., 2013)

χf+1 = χ̃f + (χ̃′)f+1∆t (3.9)

where

(χ̃′)f+1 =
(χ̃′)1 + 2(χ̃

′)2 + 2(χ̃
′)3 + (χ̃

′)4
6

(3.10)

while

(χ̃′)1 = χ̃
′(χ̃f , T̃ f ) (χ̃′)2 = χ̃

′

(
χ̃f +

(χ̃′)1
2
∆t, T̃ f +

∆T̃ f

2

)

(χ̃′)3 = χ̃
′

(
χ̃f +

(χ̃′)2
2
∆t, T̃ f +

∆T̃ f

2

)

(χ̃′)4 = χ̃
′
(
χ̃f + (χ̃′)3∆t, T̃

f +∆T̃ f
)

∆T̃ f = T̃ f+1 − T̃ f

(3.11)

The temperature dependence of thermal conductivity and specific heat of both the chip wall
(made by silicon) and the sample layer (solution of ethylene glycol – EG and water) was assumed
in the numerical model. These parameters were calculated as temperature-dependent polynomial
functions using a linear regression method. In the case of silicon, the polynomial functions are
of the form

λ̃w(T̃ ) = 1.3496 · 10
−8T̃ 5 + 1.1636 · 10−5T̃ 4 + 0.0024T̃ 3 + 0.1416T̃ 2 − 2.0261T̃ + 54.3813

c̃w(T̃ ) = 2.4923 · 10
−7T̃ + 9.1657 · 10−5T̃ 3 + 0.0023T̃ 2 + 1.395T̃ + 677.6804

(3.12)
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while for the EG solution they are expressed as

λ̃s(T̃ ) = −2.4041 · 10
−2T̃ 2 − 17.741T̃ + 1442.8)

1

1000

c̃s(T̃ ) = 2.8467T̃ + 2727.7
(3.13)

It should be noted that in the case of silicon, the measurement points taken from the liter-
ature (Desai, 1986; Glassbrenner and Slack, 1964) in the temperature range 20-300 K (−253◦C
to 27◦C) and coefficients R2 = 0.989 for thermal conductivity and R2 = 0.999 for specific heat
were adopted. On the other hand, for the EG solution, the relationships given the producer
MeGlobalTM (MeGlobalTM, 2008; Zhou et al., 2013) were used. In addition, the fuzzy temper-
ature appearing in Eqs. (3.12) and (3.13) should be expressed in ◦C.

4. Example of computations

The study analyses one-dimensional heat transfer in a microfluidic system (see Fig. 1) with the
dimensions: Wf = 5 · 10

−5m, Ww = 2.5 · 10
−5m, Hf = 3.5 · 10

−4m and Hw = Hs = 10
−4m

(Piasecka-Belkhayat and Skorupa, 2023; Zhou et al., 2013).

The microchannel contains the working fluid. During the cooling process, liquid nitrogen is
applied, and because of the presence of the liquid form and particles of evaporated nitrogen, its
flow is considered two-phase. In contrast, during warming, water is introduced into the system,
whose flow is assumed to be single-phase. The working fluid is characterised by the following
variables: for cooling Tf = −196

◦C, αΓ = 1.048 · 10
4Wm−2K−1 and for warming Tf = 40

◦C,
αΓ = 4.74 · 10

4Wm−2K−1, respectively (Piasecka-Belkhayat and Skorupa, 2023; Zhou et al.,
2013).

The sample layer is examined as a solution of CPA (ethylene glycol, EG) and the biological
sample is considered as water in proportions: 45% of EG and 55% of H2O. For this solution, the
vitrification parameters can be stated: Tm = 243.5K, Q = 4.187 · 10

3 Jmol−1, ka = 3.933 · 10
7

s−1K−1 (for cooling), and ka = 1.287 s
−1K−1 (for warming) (Piasecka-Belkhayat and Skorupa,

2023; Zhou et al., 2013). Other quantities are also included in the calculations: Lh = 334 ·
103 Jkg−1, ρh = 1000 kgm

−3, ρw = 2330 kgm
−3 (Piasecka-Belkhayat and Skorupa, 2023).

In the numerical example, the parameters related to the time step and the given geometric
grid are also specified: ∆t = 0.01 s, h1 = 2.0202 · 10

−6m, nel,1 = 100 (the number of elements
is l1 = 99). In addition, a numerical analysis was also performed for the modified grid, where
h2 = 1.005 · 10

−6m, nel,2 = 200 (the number of elements is l2 = 199). The initial condition
determines the values: T0 = 22

◦C and χ0 = 0.

The interesting thing is the method of introducing trapezoidal fuzzy numbers into the model.
At the time t = 0, the deterministic values of the uncertain thermal parameters are determined,
and then the triangular and trapezoidal fuzzy numbers are defined according to the relations:
λ̃w or s = (λw or s−0.05λw or s, λw or s, λw or s+0.05λw or s), c̃w or s = (cw or s−0.05cw or s, cw or s, cw or s+
0.05cw or s) and λ̃w or s = (λw or s − 0.025λw or s, λw or s + 0.025λw or s, 0.025λw or s, 0.025λw or s),
c̃w or s = (cw or s − 0.025cw or s, c+ 0.025cw or s, 0.025cw or s, 0.025cw or s) – compare with the defini-
tion of trapezoidal fuzzy numbers provided in (Piasecka-Belkhayat and Korczak, 2020; Skorupa,
2023). As a consequence, the obtained results are triangular and trapezoidal fuzzy numbers as
well.

Firstly, the results are reported for a mesh containing 100 nodes (nel,1 = 100). Figure 3
shows changes in the fuzzy temperature as a function of time for (a) cooling and (b) warming
for α = 0.25. The results have been prepared for the point in the centre of the sample (point C
in Fig. 1, when z = Hw +Hs) as a solid line and for the point close to the contact between the
sample layer and the chip wall (close to point B in Fig. 1, when z = 1.01 · 10−4m) as a dashed
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line. Because the obtained interval width is small, zoomed-in approximations of selected sections
of the diagrams have been created.

Fig. 3. Fuzzy temperature as a function of time during (a) cooling and (b) warming for α = 0.25 with
zoomed fragments

As can be observed, the minimum temperature was achieved after 14.1 s, confirming that
a high cooling rate was used in the process (it is an average value of the fuzzy number). In
addition, it can be concluded that point B responds more rapidly to temperature changes caused
by the working fluid. The physiological temperature of the sample was restored after about 7.15 s
during warming (it is the average value of the fuzzy number). Furthermore, from these plots
and simulation data, it is possible to estimate the time required to pass through the “dangerous
temperature region” (DTR), which typically occurs between −20◦C and −90◦C (Zhou et al.,
2013). In our case, it is equal to 0.2 s and 0.26 s for cooling and warming, respectively.

Fig. 4. Fuzzy degree of crystallisation as a function of time during (a) cooling and (b) warming for
α = 0.25 with zoomed fragments

Figure 4 illustrates the change in the fuzzy degree of crystallisation as a function of time
in (a) cooling and (b) warming phases for α = 0.25. Once again, functions for points B and C
were produced, as well as an approximation of certain fragments of the curve. From Fig. 4, it
can be deduced that the chart for cooling stabilises at a certain level. However, for warming, a
sudden increase in the degree of crystallisation occurs at the time of passing through the DTR,
and then goes to 0. This is caused by the phenomenon of recrystallisation. It should be noted
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that the recrystallisation phenomenon is also reflected in Fig. 3b, where at a certain moment
the temperature drops despite the continuous warming process.

Based on the analysis of the change in the degree of crystallisation, its maximum values
can be indicated (average of the given fuzzy number). For the cooling and warming process,
χ = 1.075 · 10−7 and χ = 0.999 were obtained, respectively.

Figure 5 presents a comparison of the trapezoidal fuzzy temperature and the trapezoidal
fuzzy degree of crystallisation with the results obtained for triangular fuzzy numbers (compare
with (Skorupa, 2023)) for different values of the parameter α. The graphs depict the moment s
of simulation when t = 0.3 for point C (compare with Fig. 1). It can be noted that the values for
α = 0 coincide with each other, and that as the value of the parameter α increases, the intervals
are narrower. One can see that for triangular fuzzy numbers for α = 1 the deterministic values
are obtained.

Fig. 5. Fuzzy temperature (a), (b), and fuzzy degree of crystallisation (c), (d) for t = 0.3 s during
cooling for different values of the parameter α

Next, an analysis was performed for a mesh that includes 200 nodes (nel,2 = 200). Very
similar results were obtained, which in the graphical form would look close to those shown in
Figs. 3-5, so it was decided to compare the selected values in Table 1 for nel,1 and nel,2. The
results presented in Table 1 are expressed as trapezoidal fuzzy numbers for α = 0.25 at point C
(z = Hw +Hs, cf. Fig. 1).
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Table 1. Results for α = 0.25 at point C for nel,1 and nel,2

Time
t [s]

Fuzzy temperature Fuzzy degree of crystallisation

T̃ [◦C] χ̃·10−8

nel,1 nel,2 nel,1 nel,2

During cooling

0.0 [22.000; 22.000] [22.000; 22.000] [0.000; 0.000] [0.000; 0.000]

0.1 [−40.985;−40.697] [−40.817;−40.529] [0.396; 0.380] [0.390; 0.372]

0.2 [−72.096;−71.887] [−71.836;−71.627] [6.113; 6.178] [6.222; 6.278]

0.4 [−121.146;−120.984] [−120.726;−120.564] [6.839; 6.927] [6.983; 7.077]

0.6 [−152.109;−152.030] [−151.796;−151.717] [6.839; 6.927] [6.983; 7.077]

0.8 [−166.891;−166.850] [−166.676;−166.636] [6.839; 6.927] [6.983; 7.077]

1.0 [−175.086;−175.061] [−174.923;−174.899] [6.839; 6.927] [6.983; 7.077]

During warming

0.0 [−196.000;−196.000] [−196.000;−196.000] [6.839; 6.927] [6.983; 7.077]

0.1 [−65.263;−65.940] [−65.735;−66.411] [1.588·105 ; 1.334·105 ] [1.410·105 ; 1.098·105 ]

0.2 [−62.255;−62.269] [−62.344;−62.352] [5.348·107 ; 5.304·107 ] [5.285·107 ; 5.224·107 ]

0.4 [7.785; 7.449] [6.828; 6.478] [0.000; 0.000] [0.000; 0.000]

0.6 [30.394; 30.366] [30.278; 30.249] [0.000; 0.000] [0.000; 0.000]

0.8 [34.751; 34.740] [34.690; 34.679] [0.000; 0.000] [0.000; 0.000]

1.0 [36.765; 36.759] [36.725; 36.719] [0.000; 0.000] [0.000; 0.000]

5. Discussion

Examining the results obtained, it is worth noting that vitrification was successfully modelled
and the temperature given by the working fluid was reached relatively quickly in the sample
domain. Furthermore, the study of the degree of crystallisation, which complements the thermal
analysis, allows us to estimate the tendency of the solution to vitrify. It can also be treated
as a marker of potential sample damage. As reported in the literature, this criterion assumes
that χ < 10−6 (Piasecka-Belkhayat and Skorupa, 2023; Skorupa, 2023; Zhou et al., 2013). In
our simulation, this condition was fulfilled for freezing, but not for warming. This is due to the
recrystallisation that occurs during the DTR transition.

The results can be compared with the data presented by Zhou et al. (2013). First, in the
article published by Zhou et al. (2013), it was indicated that the DTR transition time was 0.042 s
for cooling and 0.057 s for warming. It can be said that these values are more satisfactory than
those calculated in our study. Similar observations appear in analysis of the maximum degree of
crystallisation, which in Zhou et al. (2013) was χ = 2 · 10−11 for cooling and χ = 2.4 · 10−3 for
warming. Those comparisons suggest that our mathematical and numerical models need some
improvements.

On the other hand, it is worth exploring the results in terms of the uncertainties introduced.
In this article, uncertain quantities are described by triangular and trapezoidal membership
functions, which are non-probabilistic algorithms. Undoubtedly, fuzzy logic is a useful tool for
modelling the inaccuracy of biological systems in the cryopreservation process. Comparing the
results for triangular and trapezoidal fuzzy numbers, one can deduce that the calculated values
are close to each other, where for α = 0 the same intervals were achieved. A regularity can also
be noticed that the higher the values of parameter α, the narrower intervals are obtained.

When focusing on the fuzzy arithmetics, it is also necessary to refer to the works (Piasecka-
-Belkhayat and Skorupa, 2023; Skorupa, 2023), in which a similar problem was considered by ap-
plying the interval set theory. In this case, the data received coincide with the simulation results
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indicated in the literature (Piasecka-Belkhayat and Skorupa, 2023; Skorupa, 2023). Moreover,
it can be observed that the results for α = 0 are the same as for interval numbers, for which a
divergence was defined as 5% of the deterministic value of the thermophysical parameters. It is
worth remembering the difference in defining the interval and fuzzy numbers, where for interval
numbers the membership function is only equal to 1 or 0. For fuzzy numbers, the partial mem-
bership of a given quantity can be formulated (membership function in the range [0, 1]), and
the modelled phenomenon can be described in more detail. Therefore, this approach allows for
a more flexible representation of quantities and their analysis.

The convergence of the finite difference method is related to the mesh step. Reducing the
grid step affects the results close to the real solution. In this paper, additional calculations were
performed for a mesh step reduced by half. The results obtained were slightly different from the
initial value of the grid step (see Table 1). However, it should be emphasized that a mesh step
that is too small increases numerical simulation time.

6. Conclusion

The paper presents a model of the vitrification process performed in a microfluidic system. The
mathematical and numerical model considers uncertain quantities by applying the fuzzy set
theory and α-cuts concept. Comparison of the results with data from the literature confirms
that fuzzy numbers are effective in the modelling of uncertainty. Therefore, imprecision of ther-
mophysical parameters is included without drastically increasing the computation time. The
differences in the results suggest that the prepared model should be improved. For example, it
is possible to change the mesh parameters or reduce the time step. However, after analysing the
results shown in Table 1, it can be deduced that by modifying the mesh by half, similar results
are attained. Another interesting idea is to calculate the results using different numerical meth-
ods, for example, finite volume method (FVM) like Zhou et al. (2013) or finite element method
(FEM). It is also worth considering extending the model to investigate energy activation and
ice nucleation. By exploring the nucleation rate and ice growth (a change in the diameter of the
ice crystals), one can further estimate the volume of ice crystals.

An interesting aspect of the paper is the discussion about differences between fuzzy numbers
and interval numbers, which was used in the literature to model cryopreservation and crystalli-
sation (Piasecka-Belkhayat and Skorupa, 2023; Skorupa, 2023).

In further research, it would also be worth analysing the nucleation process and ice crystal
growth.
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